Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(6): 98, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619641

RESUMEN

CAR-T-cell therapy has shown promise in treating hematological malignancies but faces challenges in treating solid tumors due to impaired T-cell function in the tumor microenvironment. To provide optimal T-cell activation, we developed a B7 homolog 3 protein (B7H3)-targeting CAR construct consisting of three activation signals: CD3ζ (signal 1), 41BB (signal 2), and the interleukin 7 receptor alpha (IL7Rα) cytoplasmic domain (signal 3). We generated B7H3 CAR-T cells with different lengths of the IL7Rα cytoplasmic domain, including the full length (IL7R-L), intermediate length (IL7R-M), and short length (IL7R-S) domains, and evaluated their functionality in vitro and in vivo. All the B7H3-IL7Rα CAR-T cells exhibited a less differentiated phenotype and effectively eliminated B7H3-positive glioblastoma in vitro. Superiority was found in B7H3 CAR-T cells contained the short length of the IL7Rα cytoplasmic domain. Integration of the IL7R-S cytoplasmic domain maintained pSTAT5 activation and increased T-cell proliferation while reducing activation-induced cell death. Moreover, RNA-sequencing analysis of B7H3-IL7R-S CAR-T cells after coculture with a glioblastoma cell line revealed downregulation of proapoptotic genes and upregulation of genes associated with T-cell proliferation compared with those in 2nd generation B7H3 CAR-T cells. In animal models, compared with conventional CAR-T cells, B7H3-IL7R-S CAR-T cells suppressed tumor growth and prolonged overall survival. Our study demonstrated the therapeutic potential of IL7Rα-incorporating CAR-T cells for glioblastoma treatment, suggesting a promising strategy for augmenting the effectiveness of CAR-T cell therapy.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Animales , Glioblastoma/terapia , Receptores Quiméricos de Antígenos/genética , Receptores de Interleucina-7/genética , Transducción de Señal , Linfocitos T , Microambiente Tumoral , Humanos
2.
J Immunol Res ; 2022: 2449373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36457849

RESUMEN

Adoptive cellular therapy with chimeric antigen receptor (CAR) T cells has emerged as a potential novel treatment for various cancers. In this study, we have generated CAR T cells targeting mucin-1 (MUC1), which is an aberrantly glycosylated antigen overexpressed on breast cancer cells. Two different signaling domains, including CD28 and 41BB, were incorporated and directly compared the superiority of different costimulatory signals. Two different CAR MUC1 constructs were transduced into primary T cells and evaluated their characteristics and antitumor activities against MUC1+ cancer cells. CAR MUC1 T cells showed high transduction efficiency and antigen specificity toward MUC1+ cancer cell lines and primary breast cancer cells. When coculturing with target cells, the transduced cells exhibited potent antitumor activity in vitro and secrete proinflammatory cytokines. Upon antigen stimulation, incorporation of the 41BB signaling domain was able to improve T cell proliferation and reduce surface PD1 expression and the upregulation of suppressive cytokines, when compared with CAR MUC1 containing the CD28 domain. Our findings show that CAR T cell targeting MUC1 can be effective against MUC1+ breast cancer cell and support the further development of CAR MUC1 T cells containing 41BB signaling in preclinical and clinical studies of breast cancer treatment.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Antígenos CD28 , Inmunoterapia Adoptiva , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...